
Existence and stability of 3-site breathers in a triangular lattice

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 1021

(http://iopscience.iop.org/0305-4470/38/5/004)

Download details:

IP Address: 171.66.16.94

The article was downloaded on 03/06/2010 at 04:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 1021–1030 doi:10.1088/0305-4470/38/5/004

Existence and stability of 3-site breathers in a
triangular lattice

Vassilis Koukouloyannis1 and Robert S MacKay2

1 Theoretical Mechanics, Department of Physics, Aristoteleion University of Thessaloniki,
54124 Thessaloniki, Greece
2 Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK

E-mail: vkouk@physics.auth.gr

Received 15 September 2004, in final form 1 December 2004
Published 19 January 2005
Online at stacks.iop.org/JPhysA/38/1021

Abstract
We find conditions for existence and stability of various types of discrete
breather concentrated around three central sites in a triangular lattice of
one-dimensional Hamiltonian oscillators with on-site potential and nearest-
neighbour coupling. In particular, we confirm that it can support non-reversible
breather solutions, despite the time-reversible character of the system. They
carry a net energy flux and can be called ‘vortex breathers’. We prove that
there are parameter regions for which they are linearly stable, for example in a
lattice consisting of coupled Morse oscillators, whereas the related reversible
breathers are unstable. Thus non-reversible breathers can be physically
relevant.

PACS numbers: 63.20.Pw, 05.45.−a

1. Introduction

A large amount of work has been done recently in the field of discrete breathers i.e. spatially
localized time-periodic motions in extended systems of coupled oscillators, since the numerical
evidence of existence of this kind of motion in [18] and precursors. Apart from some one-
dimensional chain systems with a phase rotation symmetry, the first existence proof of breathers
in discrete systems was provided in [13]. This paper concentrated mainly on time-reversible
breathers, but it also proposed that many lattices could support non-reversible solutions.
The explicit example given by the authors consisted of only three sites in a triangle so that
the existence of ‘rotating wave’ solutions follows by straightforward symmetry methods for
Hamiltonian systems (in the DNLS case, the solutions can be written down immediately
and even their linear stability was calculated explicitly in [3]), but the extension to lattices
was made plausible by a combination of analysis [2] and numerics [4, 5]. Reference [8]
coined the term ‘vortex breather’ for non-reversible spatially localized time-periodic motions
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Figure 1. The lattice.

and studied them in a square discrete nonlinear Schrodinger (DNLS) lattice. Similar results
were obtained later in [15]. Non-reversible breathers are physically significant because they
generically carry a nonzero mean energy flux, and they are often observed to be stable. Indeed,
some have recently been observed in experiments on interacting optical waveguides [6, 16].

In this paper, we prove the existence of vortex breathers in an example class of lattice
systems and prove that they are linearly stable under suitable conditions, thus confirming and
complementing previous work and providing a systematic method for study of such questions.

The class of system we consider is a two-dimensional triangular lattice (figure 1) consisting
of one degree-of-freedom Hamiltonian oscillators with nearest-neighbour coupling through
the coupling constant ε. The Hamiltonian of the full system is

H = H0 + εH1 =
∞∑

i,j=−∞

p2
ij

2
+ V (xij ) +

ε

2

∞∑
i,j=−∞

{(xij − xi−1,j )
2 + (xij − xi−1,j+1)

2

+ (xij − xi,j−1)
2 + (xij − xi,j+1)

2 + (xij − xi+1,j−1)
2 + (xij − xi+1,j )

2},
and it is assumed that the potential V of the oscillator possesses a stable equilibrium at
(x, p) = (0, 0), with V ′′(0) = ω2

ph > 0. It is time-reversible with respect to the involution
p �→ −p.

2. The method of proof of existence of breathers

A natural strategy to prove existence of vortex breathers in the triangular lattice would be
to restrict attention to functions of time on the lattice with the property that xR(s)(t) =
xs(t + T/3) for all sites s and times t, where R is rotation of the lattice by 2π/3 about the
centre of a chosen triangle of sites and T a candidate period, and continue the obvious 3-site
solution from the uncoupled limit. This restriction removes the relative phase-shift degeneracy
of the general uncoupled multibreather, making the continuation problem non-degenerate.

To allow for computation of their stability, however, and also to make a simultaneous
treatment of all symmetry types and to permit potential generalization to situations with no
particular spatial symmetry, here we use a general method for existence of multibreathers,
which determines how the coupling resolves the relative phase-shift degeneracy, following the
lines of [1, 9, 12, 14] (closely related also to [2]).
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In the limit ε → 0, we consider the three encircled oscillators of figure 1 moving in
identical periodic orbits with period T but in arbitrary phases (rationally related periods could
also be considered, but we intend to make use of the 2π/3 rotation symmetry of the lattice).
From now on we call these oscillators ‘central’ and denote them by the indices 1, 2, 3.
This state defines a trivially localized and time-periodic motion with period T. We seek
conditions under which this motion can be continued for ε �= 0 to provide a breather, and
we seek to determine the linear stability of the resulting solutions. We apply the action-angle
canonical transformation to the central oscillators. The system is described now by the set
of variables (xij , pij , wk, Ik) with k ∈ S and i, j ∈ Z

2\S where S is the set of ‘central’
oscillators. So the above-mentioned unperturbed periodic orbit is described at time t by
z0(t) = (xij (t), pij (t), wk(t), Ik(t)) with z0(t + T ) = (xij (t), pij (t), wk(t) + 2π, Ik(t)).

In [1] (extended in [12] and [14]) it is proven that under the non-resonance condition
2πn/T �= ωph∀n ∈ Z there is an effective Hamiltonian H eff whose critical points correspond
to periodic orbits (in fact breathers) of the full system for ε small enough. The effective
Hamiltonian is defined by

H eff(J1, J2, A, φ1, φ2) = 1

T

∮
H ◦ z(t) dt,

where z is a periodic path in the phase space obtained by a continuation procedure for given
relative phases φ, relative momenta J and symplectic ‘area’ A. In the lowest order of
approximation, the unperturbed orbit z0 can be taken for z. In our case, this coincides with
the averaged Hamiltonian over an angle, for example w3 = ω3t + w30 , due to the linear
relationship of w3 with t. Since, by construction, the resulting effective Hamiltonian does
not depend on the selected angle w3, a canonical transformation to the ‘central’ oscillators is
induced

ϑ = w3 A = I1 + I2 + I3

φ1 = w1 − w3 J1 = I1

φ2 = w2 − w3 J2 = I2

and, in the lowest order of approximation, the effective Hamiltonian becomes

H eff = H0(J1, J2, A) + ε〈H1〉(J1, J2, A, φ1, φ2), (1)

where

〈H1〉 = 1

T

∮
H1 dt

which coincides with 〈H1〉w3 , the average value of H1 over the angle w3. Note that since H eff

is independent of ϑ,A is a constant of motion.
As we have already mentioned, the critical points of this effective Hamiltonian correspond

to breathers. But for non-degenerate critical points, to leading order in ε this condition
reduces to the conditions

∂〈H1〉
∂φi

= 0 i = 1, 2,

which coincides with the result of [9].
The linear stability of the fixed point of H eff determines also the linear stability of the

breather. This is proven in [1] for the first-order approximation to H eff , under the assumption
of distinct eigenvalues of the first-order matrix, and in [12] for the general case. The linear
stability of this point is determined by the eigenvalues of the matrix E = �D2H eff , where
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� = (
0 −I

I 0

)
and I the 2 × 2 identity matrix. More specifically, the form of the stability

matrix is

E =




− ∂2H eff

∂φ1∂J1
− ∂2H eff

∂φ1∂J2
− ∂2H eff

∂φ2
1

− ∂2H eff

∂φ1∂φ2

− ∂2H eff

∂φ2∂J1
− ∂2H eff

∂φ2∂J2
− ∂2H eff

∂φ2∂φ1
− ∂2H eff

∂φ2
2

∂2H eff

∂J 2
1

∂2H eff

∂J1∂J2

∂2H eff

∂J1∂φ1

∂2H eff

∂J1∂φ2

∂2H eff

∂J2∂J1

∂2H eff

∂J 2
2

∂2H eff

∂J2∂φ1

∂2H eff

∂J2∂φ2




or to first order in ε, by taking (1) into consideration,

E =




−ε
∂2〈H1〉
∂φ1∂J1

−ε
∂2〈H1〉
∂φ1∂J2

−ε
∂2〈H1〉
∂φ2

1
−ε

∂2〈H1〉
∂φ1∂φ2

−ε
∂2〈H1〉
∂φ2∂J1

−ε
∂2〈H1〉
∂φ2∂J2

−ε
∂2〈H1〉
∂φ2∂φ1

−ε
∂2〈H1〉
∂φ2

2

∂2H0

∂J 2
1

+ ε
∂2〈H1〉
∂J 2

1

∂2H0
∂J1∂J2

+ ε
∂2〈H1〉
∂J1∂J2

ε
∂2〈H1〉
∂J1∂φ1

ε
∂2〈H1〉
∂J1∂φ2

∂2H0
∂J2∂J1

+ ε
∂2〈H1〉
∂J2∂J1

∂2H0

∂J 2
2

+ ε
∂2〈H1〉
∂J 2

2
ε

∂2〈H1〉
∂J2∂φ1

ε
∂2〈H1〉
∂J2∂φ2




. (2)

If the eigenvalues of matrix (2) lie on the imaginary axis and are simple to first order in ε

(or have definite ‘signature’, to be explained later) then for small enough ε the discrete
breather is linearly stable.

The method is close to the ‘effective action’ method of [2] (which was independently
proposed in [11] though without details). The effective action function is obtained the same
way as the effective Hamiltonian but without the constraints on the relative momenta. If the
effective Hamiltonian depends non-degenerately on the relative momenta (as is generically
the case) then there is a one-to-one correspondence between their critical points, so the same
DB are found either way. For an example of analysis using the effective action method, see
appendix A of [7]. The advantage of the effective Hamiltonian approach is that in principle
it can determine the dynamics near a DB to arbitrary order (of Taylor expansion). Although
the effective action approach can give linear stability information if augmented by information
equivalent to the quadratic part of the dependence of the effective Hamiltonian on relative
momenta, it seems cleaner to us to go straight to the effective Hamiltonian.

3. Analysis for a lattice with a general on-site potential

3.1. Existence of solutions

We consider a lattice like that described in section 1, without specifying the potential of the
oscillators. The solution of an uncoupled one-dimensional oscillator is then described by

x(t) =
∞∑

n=0

An(I) cos nw =
∞∑

n=0

An(I) cos[n(ωt + ϑ)]. (3)

In order to calculate the breather solutions on this lattice, we have to calculate first the average
value of H1 along the unperturbed periodic orbit described in the previous section. Now

H1 = 1
2 [(x1 − x2)

2 + (x2 − x3)
2 + (x1 − x3)

2] = x2
1 + x2

2 + x2
3 − x1x2 − x1x3 − x2x3.

Since the squared terms are independent of φi we will see they do not contribute, so we
deal only with the mixed terms. We first calculate

I1 =
∫ T

0
x1x3 dt,
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and drop the terms which are independent of φi . Using (3) this becomes

I1 =
∫ T

0

∞∑
n=1

∞∑
s=1

A1n(J1) cos(nw1)A3s(J3) cos(sw3) dt

=
∞∑

n=1

∞∑
s=1

A1n(J1)A3s(J3)

∫ T

0
cos

[
n
(
ω1t + w10

)]
cos

[
s
(
ω3t + w30

)]
dt

=
∞∑

n=1

∞∑
s=1

A1nA3s

2

∫ T

0

{
cos

[
n
(
ω1t + w10

)
+ s

(
ω3t + w30

)]
+ cos

[
n
(
ω1t + w10

) − s
(
ω3t + w30

)]}
dt

and since ω1 = ω3 by choice,

I1 =
∞∑

n=1

A1nA3n

2

∫ T

0
cos

[
n
(
w10 − w30

)]
dt =

∞∑
n=1

A1nA3nT

2
cos(nφ1),

where as we have already mentioned φ1 = w1 −w3 = w10 −w30 . In the same way, by putting
φ2 = w2 − w3 = w20 − w30 and φ3 = w2 − w1 = w20 − w10 = φ2 − φ1, we calculate

I2 =
∞∑

n=1

A2nA3nT

2
cos(nφ2)

and

I3 =
∞∑

n=1

A1nA2nT

2
cos(nφ3).

So, we finally obtain

〈H1〉 = C(J ) − 1

2

{ ∞∑
n=1

A1nA3n cos nφ1 + A2nA3n cos nφ2 + A1nA2n cos nφ3

}
.

Note that the three angle variables are not independent. In the following we assume that φ3

depends on the other two according to the relation φ3 = φ2 − φ1. Bearing that in mind and
using the fact that I1 = I2 = I3 and consequently A1n = A2n = A3n = An, the condition for
periodic orbits to leading order in ε becomes

∂〈H1〉
∂φ1

= 1

2

∞∑
n=1

nA2
n(sin nφ1 − sin nφ3) = 0

∂〈H1〉
∂φ2

= 1

2

∞∑
n=1

nA2
n(sin nφ2 + sin nφ3) = 0.

This is satisfied for all choices of harmonic content if ∀n ∈ N,

sin(nφ1) − sin[n(φ2 − φ1)] = 0 sin(nφ2) + sin[n(φ2 − φ1)] = 0.

This system has at least the solutions

φ1 = 0 φ2 = 0 φ1 = 0 φ2 = π

φ1 = π φ2 = 0 φ1 = π φ2 = π

which correspond to time-reversible breather solutions, and the solutions

φ1 = 2π

3
φ2 = 4π

3
φ1 = 4π

3
φ2 = 2π

3
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which correspond to non-reversible breather solutions. Under non-degeneracy assumptions,
these leading order in ε solutions have unique continuations to true solutions. The true
solutions have the same symmetry properties as the leading order ones, by uniqueness of the
continuation. Note that due to the symmetry of the system under rotation by an angle δ = 2π

3 ,
the time-reversible solutions of the system can be grouped in two classes. The first has the
‘central’ oscillators moving in phase and the second has one of the ‘central’ oscillators moving
in anti-phase with the other two. Depending on the type of the oscillator (i.e. the sequence
(An)), we could have other solutions also, but we will not examine that possibility here.

3.2. Stability of the calculated solutions

In order to evaluate the linear stability of the solutions, we need to evaluate the eigenvalues
of the stability matrix E. Bearing always in mind that φ3 = φ2 − φ1, its various components
are calculated as

∂2〈H1〉
∂φ2

1

= 1

2

∞∑
n=1

n2A2
n(cos nφ1 + cos nφ3) = f1 + f3

∂2〈H1〉
∂φ2

2

= 1

2

∞∑
n=1

n2A2
n(cos nφ2 + cos nφ3) = f2 + f3

∂2〈H1〉
∂φ1∂φ2

= −1

2

∞∑
n=1

n2A2
n(cos nφ3) = −f3

with

fi = f (φi) = 1

2

∞∑
n=1

n2A2
n(cos nφi).

We have also
∂2H0

∂J 2
1

= 2c
∂2H0

∂J1∂J2
= c

∂2H0

∂J 2
2

= 2c

with

c = dω

dJ
.

On the other hand if we put

gi = g(φi) =
∞∑

n=1

nAn

∂An

∂I
sin nφi

then,
∂2〈H1〉
∂φ1∂J1

= g3
∂2〈H1〉
∂φ1∂J2

= g1 + g3

∂2〈H1〉
∂φ2∂J1

= g2 − g3
∂2〈H1〉
∂φ2∂J2

= −g3.

So the stability matrix (2) becomes

E =




−εg3 −ε(g1 + g3) −ε(f1 + f3) εf3

−ε(g2 − g3) εg3 εf3 −ε(f2 + f3)

2c + ε
∂2〈H1〉
∂J 2

1
c + ε

∂2〈H1〉
∂J1∂J2

εg3 ε(g2 − g3)

c + ε
∂2〈H1〉
∂J1∂J2

2c + ε
∂2〈H1〉
∂J 2

2
ε(g1 + g3) −εg3


 . (4)
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The eigenvalues of the matrix for the first class of time-reversible solutions with
φ1 = φ2 = 0 are to leading order of approximation

λ1,2,3,4 = ±
√

−3cf (0)
√

ε + O(ε).

Since

f (0) = 1

2

∞∑
n=1

n2A2
n > 0

the sign of the anharmonicity c determines the linear stability of the breather. If εc < 0 the
specific solution is unstable, while for εc > 0 the leading order calculation suggests linear
stability but since up to this order the eigenvalues have multiplicity two, which can lead to
complex instability, we have to perform a symplectic signature analysis as is described in [10].
For the specific case, with f (0) = f it is

D2H eff =




2c c 0 0
c 2c 0 0
0 0 2εf −εf

0 0 −εf 2εf


 ,

which leads to the quadratic form

δ2H = 3
2c(J1 + J2)

2 + 1
2c(J1 − J2)

2 + 1
2εf (φ1 + φ2)

2 + 3
2εf (φ1 − φ2)

2,

which is definite if εc > 0, and thus the breather remains linearly stable for all small
perturbations.

For the other class of solutions with at least one φi = π the eigenvalues of the stability
matrix E are

λ1,2 = ±
√

−c(2f (0) + f (π))
√

ε + O(ε), λ3,4 = ±
√

−3cf (π)
√

ε + O(ε).

Since

f (π) = 1

2

∞∑
n=1

(−1)nn2A2
n

we cannot know its sign in general, but from the above we conclude that

2f (0) + f (π) > 0.

So in order to have both pairs of eigenvalues in the imaginary axis, i.e. this class of solutions
to be linearly stable, we need f (π) and εc > 0.

The eigenvalues of the matrix for the non-reversible solutions are for both cases

λ1,2,3,4 = ±i
√

3cf
√

ε + O(ε)

with

f = f

(
2π

3

)
= f

(
4π

3

)
=

∞∑
n=1

(−1)nn2A2
n cos

(
nπ

3

)

and

g = g

(
2π

3

)
= −g

(
4π

3

)
=

∞∑
n=1

(−1)n+1nAn

∂An

∂I
sin

(
nπ

3

)
.
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The leading order of these eigenvalues implies linear stability if εcf > 0, but since, up to
this order of approximation, the multiplicity of the eigenvalues is two we perform a symplectic
signature analysis. Now

φ2 = 4π

3

φ1 = 2π

3


 ⇒ φ3 = φ2 − φ1 = 2π

3
,

so for this solution

f1 = f2 = f3 = f, g1 = g3 = g and g2 = −g.

So D2H eff becomes

D2H eff =




2c c εg −2εg

c 2c 2εg −εg

εg 2εg 2εf −εf

−2εg −εg −εf 2εf


 .

Consequently the corresponding quadratic form is

δ2H = 2cJ 2
1 + 2cJ1J2 + 2cJ 2

2 + 2εgJ1φ1 + 4εgJ2φ1 + 2εf φ2
1 − 4εgJ1φ2

− 2εgJ2φ2 − 2εf φ1φ2 + 2εf φ2
2,

which can be expressed as

δ2H = c

2

(
2J1 + J2 +

εg

c
(φ1 − 2φ2)

)2
+

3c

2

(
J2 +

εgφ1

c

)2

+
ε

2

(
f − εg2

c

)
(φ1 + φ2)

2

+
3ε

2

(
f − εg2

c

)
(φ1 − φ2)

2,

which is definite if εf c > 0 and ε is small enough, and so the discrete breather remains
linearly stable for all small perturbations. Note that g is not used to extract our results, so we
do not need to compute it, as we can see also in the following example.

4. The Morse oscillator

We apply the previous analysis to a triangular lattice consisting of Morse oscillators. The
Hamiltonian of the Morse oscillator is

HM = p2

2
+ (e−x − 1)2.

The solution of the corresponding system in the domain of bounded motion is

x(t) = ln

{
1 − √

E cos(
√

2(1 − E)t + ϑ)

1 − E

}
.

The Fourier series of this solution is [17]

x(t) = C0 − 2
∞∑

s=1

s−1 e−sa cos[s(
√

2(1 − E)t + ϑ)],

where E is the pertinent value of the total energy for the specific orbit, cosh a = E− 1
2 and C0

a factor independent of t. By applying the method of the previous section, we obtain for the
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average value of H1

〈H1〉 = 2

{∫
arctan

sin φ1

z1 − cos φ1
dφ1 +

∫
arctan

sin φ2

z2 − cos φ2
dφ2

+
∫

arctan
sin φ3

z3 − cos φ3
dφ3

}
+ C(J ),

where as before φ3 = φ2 − φ1, C(J ) is independent of φ, and

z1 = ea1+a3 , z2 = ea2+a3 , z3 = ea1+a2 .

Since the central oscillators are moving in identical orbits we have ai = a and zi = z = e2a .
The only critical points of the corresponding effective Hamiltonian are those we mentioned in
the previous section. Next, we calculate the components of the stability matrix for the specific
case. Let

fi = 2
z cos φi − 1

1 + z2 − 2z cos φ1
,

then
∂2〈H1〉
∂φ2

1

= f1 + f3
∂2〈H1〉
∂φ1∂φ2

= −f3
∂2〈H1〉
∂φ2

2

= f2 + f3.

The form of the unperturbed part of the Hamiltonian, in action-angle variables, is

H0(I1, I2, I3) = 1
2

(
2
√

2I1 + 2
√

2I2 + 2
√

2I3 − I 2
1 − I 2

2 − I 2
3

)
.

So,

∂2H0

∂J 2
1

= −2
∂2H0

∂J1∂J2
= −1

∂2H0

∂J 2
2

= −2.

Then the form of the stability matrix for the Morse oscillator coincides with that of (4).
The eigenvalues for the reversible solutions are to leading order of approximation, for the first
class of time-reversible solutions

λ1,2,3,4 = ±
√

6

z − 1

√
ε + O(ε),

while for the second they are

λ1,2 = ±
√

2
z + 3

z2 − 1

√
ε + O(ε), λ3,4 = ±i

√
6

1 + z

√
ε + O(ε).

This means that the time-reversible solutions are unstable. The eigenvalues of the matrix E
for the non-reversible solutions are

λ1,2,3,4 = ±i

√
3

2 + z

1 + z + z2

√
ε + O(ε),

which means, using also the results of the previous section, that these solutions are linearly
stable.

5. Conclusions

We proved the existence of various 3-site breathers in a triangular lattice, both time-reversible
and non-reversible; the latter are ‘vortex breathers’. After that we examined their linear
stability and extracted general stability criteria. In particular, we found that the rotating wave
solutions in the Morse-triangular lattice are linearly stable, while the time-reversible ones are
unstable. So, in that specific case, the non-reversible solutions are the important ones.
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The method of analysis can be expected to be useful for many other Hamiltonian lattice
systems. This includes two-dimensional lattices with other geometries, as for example square
lattices, as well the class of DNLS systems of relevance to photonic lattices, though their
analysis is simpler because of the conserved number, for example they have solutions with a
single Fourier component in time whose existence reduces to a problem of statics and stability
to one for equilibria.
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